organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1,1-Tris(phenylsulfonyloxymethyl)ethane

Takashi Fujihara,^a* Eri Shioji^b and Akira Nagasawa^b

^aMolecular Analysis and Life Science Center, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and ^bDepartment of Chemistry, Faculty of Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, lapan

Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Received 19 July 2007; accepted 20 July 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.126; data-to-parameter ratio = 18.2.

In the crystal structure of the title compound, $C_{23}H_{24}O_9S_3$, intermolecular $C-H\cdots O$ hydrogen bonds are found, which link the molecules into a three-dimensional network. Weak $C-H\cdots\pi$ interactions are also present in the structure.

Related literature

Intermolecular $C-H\cdots\pi$ interactions are also found in the crystal structure of the analogous sulfonate compound (Kakeya et al., 2006). The bond lengths and angles are comparable with those found in related aromatic sulfonates (Kakeya et al., 2006; Manivannan et al., 2005).

For related literature, see: Allen et al. (1987); Fleischer et al. (1971); Geue & Searle (1983).

Experimental

Crystal data

$C_{23}H_{24}O_9S_3$
$M_r = 540.60$
Triclinic, P1
a = 5.8962 (5) Å
b = 14.6650 (14) Å
c = 15.1812 (14) Å
$\alpha = 69.164 \ (2)^{\circ}$
$\beta = 85.096 \ (3)^{\circ}$

$\gamma = 87.685 \ (2)^{\circ}$
V = 1222.28 (19) Å ³
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.36 \text{ mm}^{-1}$
T = 173 (2) K
$0.21 \times 0.12 \times 0.11 \text{ mm}$

Data collection

```
Bruker SMART APEX CCD
  area-detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.919, T_{\max} = 0.962
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	317 parameters
$wR(F^2) = 0.126$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$
5782 reflections	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

9027 measured reflections

 $R_{\rm int} = 0.026$

5782 independent reflections

4717 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1C \cdot \cdot \cdot O2^{i}$	0.98	2.53	3.426 (3)	152
C10−H10· · · O5 ⁱⁱ	0.95	2.59	3.361 (3)	138
$C14 - H14 \cdots O8^{iii}$	0.95	2.49	3.222 (3)	134
$C21 - H21 \cdots Cg1^{iv}$	0.95	2.92	3.766 (9)	149

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) x, y + 1, z.

Data collection: SMART-W2K/NT (Bruker, 2003); cell refinement: SAINT-W2K/NT (Bruker, 2003); data reduction: SAINT-W2K/NT; program(s) used to solve structure: SHELXTL-NT (Bruker, 2003); program(s) used to refine structure: SHELXTL-NT; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL-NT.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2347).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

- Bruker (2003). SAINT-W2K/NT (Version 5.0), SMART-W2K/NT (Version 5.6), and SHELXTL-NT (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fleischer, E. B., Gebala, A. E., Levey, A. & Tasher, P. A. (1971). J. Org. Chem. 36, 3042-3044.
- Geue, R. J. & Searle, G. H. (1983). Aust. J. Chem. 36, 927-935.
- Kakeya, M., Fujihara, T. & Nagasawa, A. (2006). Acta Cryst. E62, o1384-01386.
- Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005). Acta Cryst. E61, o2736-o2738.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3628 [doi:10.1107/S1600536807035507]

1,1,1-Tris(phenylsulfonyloxymethyl)ethane

T. Fujihara, E. Shioji and A. Nagasawa

Comment

We report here the title compound, (I) which is the precursor compound for branched acyclic polyamine ligands of the metal cage complexes (Geue & Searle, 1983). The structure of (I), with the atom-numbering scheme, is shown in Fig. 1. The C—C distances in phenyl ring [1.372 (4) – 1.392 (3) Å] are within normal ranges for aromatic systems. The phenyl rings (C6—C11, C12—C17 and C18—C23) are planar, with a largest deviation of 0.0108 (19) Å from the plane being that of atom C12. The S-Csp² bond lengths, *viz.* S1—C6 [1.754 (2) Å], S2—C12 [1.757 (2) Å] and S3—C18 [1.756 (2) Å], agree with the general S—Csp² bond length (1.75 Å, Allen *et al.*, 1987). Other S—C, S—O, S=O bond lengths are comparable to those found in related structures in that they all contain the *p*-toluenesulfonyl groups (Kakeya *et al.*, 2006, Manivannan *et al.*, 2005). Analysis of the crystal packing of the title compound shows the existence of the hydrogen-bonding interactions (C—H···O and C—H··· π , where Cg1 is the centroid of the ring formed by C12—C17), which connect the neighbouring molecules to form a three-dimensional network as shown in Fig. 2 and Table 1.

Experimental

The title compound (I) was synthesized according to the previously reported method of Fleischer *et al.* (1971). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in acetone at 298 K. ¹H NMR (CDCl₃, δ , p.p.m.): 7.54–7.7.84 (m, 15H, C₆H₅), 3.82 (s, 6H, CH₂), 0.92 (s, 3H, CH₃). Analysis calculated for C₂₃H₂₄O₉S₃: C 28.32, H 4.75%. Found: C 51.07, H 4.32%.

Refinement

The H atoms were placed in calculated positions, with C—H = 0.98 Å (for CH₃), 0.99 Å (for CH₂) or 0.95 Å (for phenyl ring), and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atoms.

Figures

Fig. 1. A perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2. A molecular packing diagram of (I).

1,1,1-Tris(phenylsulfonyloxymethyl)ethane

Crystal data	
C ₂₃ H ₂₄ O ₉ S ₃	Z = 2
$M_r = 540.60$	$F_{000} = 564$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.469 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.8962 (5) Å	Cell parameters from 2403 reflections
b = 14.6650 (14) Å	$\theta = 2.4 - 27.7^{\circ}$
c = 15.1812 (14) Å	$\mu = 0.36 \text{ mm}^{-1}$
$\alpha = 69.164 \ (2)^{\circ}$	T = 173 (2) K
$\beta = 85.096 \ (3)^{\circ}$	Plate, colourless
$\gamma = 87.685 \ (2)^{\circ}$	$0.21\times0.12\times0.11~mm$
$V = 1222.28 (19) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	5782 independent reflections
Radiation source: fine-focus sealed tube	4717 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
Detector resolution: 8.366 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^{\circ}$
T = 173(2) K	$\theta_{\min} = 1.4^{\circ}$
ϕ and ω scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -19 \rightarrow 13$
$T_{\min} = 0.919, \ T_{\max} = 0.962$	$l = -19 \rightarrow 19$
9027 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 0.5823P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
5782 reflections	$\Delta \rho_{max} = 0.52 \text{ e} \text{ Å}^{-3}$
317 parameters	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none

sup-2

Special details

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

-2.4060(0.0064)x + 3.1536(0.0154)y + 13.2033(0.0089)z = 14.2134(0.0208)

* 0.0092 (0.0018) C18 * -0.0072 (0.0020) C19 * -0.0003 (0.0022) C20 * 0.0059 (0.0020) C21 * -0.0040 (0.0019) C22 * -0.0036 (0.0018) C23

Rms deviation of fitted atoms = 0.0058

2.1818 (0.0070) *x* + 13.2877 (0.0075) *y* + 8.9329 (0.0152) *z* = 14.2436 (0.0115)

Angle to previous plane (with approximate e.s.d.) = 73.42 (0.09)

* -0.0108 (0.0019) C12 * 0.0080 (0.0019) C13 * 0.0012 (0.0022) C14 * -0.0077 (0.0023) C15 * 0.0050 (0.0024) C16 * 0.0043 (0.0022) C17

Rms deviation of fitted atoms = 0.0069

2.2980(0.0056)x - 1.4353(0.0147)y + 12.8260(0.0084)z = 4.7002(0.0133)

Angle to previous plane (with approximate e.s.d.) = 73.71 (0.09)

* -0.0005 (0.0016) C6 * -0.0065 (0.0017) C7 * 0.0069 (0.0017) C8 * -0.0001 (0.0018) C9 * -0.0069 (0.0017) C10 * 0.0071 (0.0016) C11

Rms deviation of fitted atoms = 0.0056

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.6339 (4)	0.79403 (17)	0.70459 (17)	0.0265 (5)
H1A	0.6937	0.7421	0.6823	0.040*
H1B	0.6493	0.7743	0.7726	0.040*
H1C	0.7197	0.8539	0.6711	0.040*
C2	0.3810 (4)	0.81257 (15)	0.68526 (15)	0.0191 (4)
C3	0.3718 (4)	0.85520 (16)	0.57846 (15)	0.0212 (4)
H3A	0.4453	0.9199	0.5529	0.025*
H3B	0.4542	0.8118	0.5491	0.025*
C4	0.2474 (4)	0.71808 (15)	0.72799 (16)	0.0215 (4)
H4A	0.2671	0.6880	0.7965	0.026*
H4B	0.0833	0.7311	0.7193	0.026*
C5	0.2762 (4)	0.88670 (16)	0.72637 (15)	0.0231 (5)
H5A	0.3603	0.9488	0.6995	0.028*
H5B	0.1154	0.8998	0.7113	0.028*

C6	0.1352 (4)	0.78195 (16)	0.42971 (15)	0.0216 (4)
C7	0.3463 (4)	0.76503 (17)	0.38950 (17)	0.0275 (5)
H7	0.4632	0.8122	0.3728	0.033*
C8	0.3819 (5)	0.67742 (18)	0.37438 (18)	0.0332 (6)
H8	0.5257	0.6638	0.3482	0.040*
C9	0.2103 (5)	0.61014 (18)	0.39704 (18)	0.0345 (6)
Н9	0.2365	0.5508	0.3857	0.041*
C10	0.0002 (5)	0.62803 (17)	0.43616 (18)	0.0318 (6)
H10	-0.1177	0.5815	0.4509	0.038*
C11	-0.0376 (4)	0.71391 (16)	0.45363 (16)	0.0265 (5)
H11	-0.1802	0.7262	0.4817	0.032*
C12	0.2772 (4)	0.47976 (16)	0.81194 (17)	0.0278 (5)
C13	0.4939 (4)	0.43840 (18)	0.82266 (19)	0.0350 (6)
H13	0.6065	0.4559	0.7710	0.042*
C14	0.5435 (5)	0.3711 (2)	0.9099 (2)	0.0449 (7)
H14	0.6903	0.3416	0.9182	0.054*
C15	0.3801 (6)	0.3473 (2)	0.9842 (2)	0.0522 (8)
H15	0.4141	0.3007	1.0436	0.063*
C16	0.1677 (6)	0.3903 (2)	0.9735 (2)	0.0553 (9)
H16	0.0570	0.3740	1.0258	0.066*
C17	0.1142 (5)	0.4573 (2)	0.8869 (2)	0.0433 (7)
H17	-0.0324	0.4871	0.8794	0.052*
C18	0.1555 (4)	1.00176 (17)	0.86626 (16)	0.0243 (5)
C19	0.3510 (5)	1.0291 (2)	0.8941 (2)	0.0393 (6)
H19	0.4608	0.9816	0.9243	0.047*
C20	0.3843 (5)	1.1268 (2)	0.8774 (2)	0.0459 (7)
H20	0.5169	1.1467	0.8968	0.055*
C21	0.2256 (5)	1.19530 (19)	0.83256 (19)	0.0387 (6)
H21	0.2489	1.2623	0.8217	0.046*
C22	0.0341 (5)	1.16772 (19)	0.80351 (19)	0.0383 (6)
H22	-0.0734	1.2157	0.7719	0.046*
C23	-0.0027 (4)	1.07034 (18)	0.82008 (18)	0.0317 (5)
H23	-0.1349	1.0509	0.8000	0.038*
01	0.1335 (2)	0.86482 (11)	0.55679 (10)	0.0215 (3)
O2	0.2426 (3)	0.96243 (11)	0.39114 (11)	0.0297 (4)
O3	-0.1545 (3)	0.91299 (12)	0.44856 (12)	0.0284 (4)
O4	0.3364 (3)	0.65333 (11)	0.67915 (11)	0.0245 (3)
05	0.3164 (3)	0.51765 (13)	0.63121 (13)	0.0398 (5)
O6	-0.0313 (3)	0.57333 (13)	0.70084 (14)	0.0396 (5)
07	0.2905 (3)	0.84512 (11)	0.82898 (11)	0.0275 (4)
08	0.1688 (3)	0.82379 (13)	0.98686 (12)	0.0374 (4)
09	-0.1156 (3)	0.86594 (13)	0.86820 (13)	0.0374 (4)
S1	0.08321 (9)	0.89170 (4)	0.45003 (4)	0.02113 (14)
S2	0.20808 (10)	0.55550 (4)	0.69854 (4)	0.02768 (15)
S3	0.10533 (10)	0.87705 (4)	0.89391 (4)	0.02641 (15)

1 1. 1	(82)
Atomic aisplacement parameters	(A^{-})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0219 (11)	0.0250 (12)	0.0312 (13)	-0.0008 (9)	-0.0027 (9)	-0.0081 (10)
C2	0.0213 (10)	0.0164 (10)	0.0199 (10)	-0.0007 (8)	-0.0028 (8)	-0.0064 (8)
C3	0.0190 (10)	0.0209 (11)	0.0221 (11)	-0.0017 (8)	-0.0015 (8)	-0.0056 (9)
C4	0.0229 (11)	0.0149 (10)	0.0260 (11)	0.0009 (8)	0.0014 (9)	-0.0073 (8)
C5	0.0328 (12)	0.0173 (10)	0.0197 (11)	0.0019 (9)	-0.0041 (9)	-0.0068 (8)
C6	0.0260 (11)	0.0188 (10)	0.0208 (11)	0.0036 (8)	-0.0040 (9)	-0.0080 (8)
C7	0.0290 (12)	0.0272 (12)	0.0279 (12)	0.0002 (10)	0.0001 (10)	-0.0124 (10)
C8	0.0375 (14)	0.0298 (13)	0.0332 (14)	0.0090 (11)	-0.0020 (11)	-0.0136 (11)
С9	0.0551 (17)	0.0216 (12)	0.0292 (13)	0.0068 (11)	-0.0076 (12)	-0.0116 (10)
C10	0.0409 (14)	0.0218 (12)	0.0316 (13)	-0.0051 (10)	-0.0056 (11)	-0.0072 (10)
C11	0.0282 (12)	0.0236 (12)	0.0255 (12)	0.0001 (9)	-0.0032(9)	-0.0058 (9)
C12	0.0329 (13)	0.0172 (11)	0.0323 (13)	-0.0037 (9)	-0.0063 (10)	-0.0063 (9)
C13	0.0337 (14)	0.0279 (13)	0.0374 (14)	-0.0028 (10)	-0.0053 (11)	-0.0036 (11)
C14	0.0437 (16)	0.0350 (15)	0.0467 (17)	0.0000 (12)	-0.0177 (13)	0.0001 (13)
C15	0.067 (2)	0.0383 (17)	0.0391 (17)	-0.0107 (15)	-0.0143 (15)	0.0047 (13)
C16	0.062 (2)	0.053 (2)	0.0383 (17)	-0.0103 (16)	0.0093 (15)	-0.0034 (14)
C17	0.0398 (16)	0.0391 (16)	0.0446 (17)	-0.0010(12)	0.0047 (13)	-0.0086 (13)
C18	0.0292 (12)	0.0256 (11)	0.0201 (11)	0.0010 (9)	-0.0012 (9)	-0.0109 (9)
C19	0.0356 (14)	0.0334 (14)	0.0510 (17)	0.0028 (11)	-0.0141 (12)	-0.0154 (13)
C20	0.0412 (16)	0.0418 (16)	0.061 (2)	-0.0094 (13)	-0.0080 (14)	-0.0246 (15)
C21	0.0562 (18)	0.0252 (13)	0.0355 (15)	-0.0045 (12)	0.0013 (13)	-0.0122 (11)
C22	0.0503 (17)	0.0278 (13)	0.0344 (14)	0.0083 (12)	-0.0075 (12)	-0.0080 (11)
C23	0.0327 (13)	0.0328 (13)	0.0329 (13)	0.0046 (11)	-0.0086 (10)	-0.0147 (11)
01	0.0203 (8)	0.0230 (8)	0.0207 (8)	0.0009 (6)	-0.0007 (6)	-0.0072 (6)
02	0.0393 (10)	0.0206 (8)	0.0259 (9)	-0.0031 (7)	0.0009 (7)	-0.0046 (7)
03	0.0272 (9)	0.0280 (9)	0.0300 (9)	0.0079 (7)	-0.0074 (7)	-0.0101 (7)
04	0.0288 (8)	0.0147 (7)	0.0303 (9)	-0.0003 (6)	0.0009 (7)	-0.0092 (6)
05	0.0616 (12)	0.0262 (9)	0.0383 (11)	0.0076 (9)	-0.0140 (9)	-0.0181 (8)
06	0.0321 (10)	0.0276 (9)	0.0570 (13)	-0.0027 (8)	-0.0163 (9)	-0.0093 (9)
07	0.0380 (9)	0.0248 (8)	0.0217 (8)	0.0081 (7)	-0.0061 (7)	-0.0105 (7)
08	0.0578 (12)	0.0288 (9)	0.0216 (9)	0.0023 (8)	-0.0039 (8)	-0.0040 (7)
09	0.0359 (10)	0.0357 (10)	0.0401 (11)	-0.0089 (8)	-0.0011 (8)	-0.0125 (8)
S1	0.0250 (3)	0.0169 (3)	0.0208 (3)	0.0024 (2)	-0.0028(2)	-0.0058 (2)
S2	0.0335 (3)	0.0164 (3)	0.0345 (3)	-0.0003 (2)	-0.0101 (3)	-0.0091 (2)
S3	0.0344 (3)	0.0226 (3)	0.0220 (3)	-0.0006 (2)	-0.0021 (2)	-0.0075 (2)
Geometric pa	arameters (Å, °)					
C1-C2		1 539 (3)	C13_	-C14	1 2 2	8 (4)
C1—H1A		0.9800	C13-	_H13	0.95	00
C1—H1B		0.9800	C13-	-C15	1 37	2 (4)
		0.9800	C14-	_H14	0.05	- (¬) 00
$C^2 - C^3$		1 521 (3)	C14-	-C16	1 37	5 (5)
$C_2 = C_3$		1.521(3) 1.522(3)	C15	_H15	0.05	00
$C_2 - C_3$		1.522(3) 1.524(3)	C15-	-115	0.93	5 (4)
U2-U4		1.324 (3)	C10-	-01/	1.38	5 (4)

C3—O1	1.461 (2)	C16—H16	0.9500
С3—НЗА	0.9900	C17—H17	0.9500
С3—Н3В	0.9900	C18—C23	1.381 (3)
C4—O4	1.456 (3)	C18—C19	1.382 (3)
C4—H4A	0.9900	C18—S3	1.756 (2)
C4—H4B	0.9900	C19—C20	1.382 (4)
С5—О7	1.466 (3)	С19—Н19	0.9500
С5—Н5А	0.9900	C20—C21	1.376 (4)
С5—Н5В	0.9900	C20—H20	0.9500
C6—C11	1.388 (3)	C21—C22	1.372 (4)
C6—C7	1.392 (3)	C21—H21	0.9500
C6—S1	1.754 (2)	C22—C23	1.382 (4)
С7—С8	1.388 (3)	C22—H22	0.9500
С7—Н7	0.9500	C23—H23	0.9500
C8—C9	1.376 (4)	O1—S1	1.5775 (16)
С8—Н8	0.9500	O2—S1	1.4263 (16)
C9—C10	1.384 (4)	O3—S1	1.4239 (16)
С9—Н9	0.9500	O4—S2	1.5706 (16)
C10-C11	1.382 (3)	O5—S2	1.4228 (19)
C10—H10	0.9500	O6—S2	1.4247 (19)
C11—H11	0.9500	O7—S3	1.5765 (17)
C12—C17	1.379 (4)	O8—S3	1.4228 (18)
C12—C13	1.389 (3)	O9—S3	1.4231 (19)
C12—S2	1.757 (2)		
C2—C1—H1A	109.5	C12—C13—H13	120.5
C2—C1—H1B	109.5	C15—C14—C13	119.9 (3)
H1A—C1—H1B	109.5	C15-C14-H14	120.0
C2—C1—H1C	109.5	C13—C14—H14	120.0
H1A—C1—H1C	109.5	C14—C15—C16	120.7 (3)
H1B—C1—H1C	109.5	C14—C15—H15	119.7
C3—C2—C5	108.18 (17)	C16—C15—H15	119.7
C3—C2—C4	111.32 (17)	C15—C16—C17	120.4 (3)
C5—C2—C4	108.81 (17)	C15-C16-H16	119.8
C3—C2—C1	106.74 (17)	С17—С16—Н16	119.8
C5—C2—C1	111.14 (18)	C12—C17—C16	118.9 (3)
C4—C2—C1	110.63 (18)	С12—С17—Н17	120.6
O1—C3—C2	108.46 (16)	С16—С17—Н17	120.6
O1—C3—H3A	110.0	C23—C18—C19	121.2 (2)
С2—С3—НЗА	110.0	C23—C18—S3	119.94 (19)
O1—C3—H3B	110.0	C19—C18—S3	118.86 (19)
С2—С3—Н3В	110.0	C20-C19-C18	119.0 (3)
НЗА—СЗ—НЗВ	108.4	С20—С19—Н19	120.5
O4—C4—C2	106.97 (16)	С18—С19—Н19	120.5
O4—C4—H4A	110.3	C21—C20—C19	120.1 (3)
C2—C4—H4A	110.3	C21—C20—H20	120.0
O4—C4—H4B	110.3	С19—С20—Н20	120.0
C2—C4—H4B	110.3	C22—C21—C20	120.6 (3)
H4A—C4—H4B	108.6	C22—C21—H21	119.7
O7—C5—C2	107.36 (17)	C20—C21—H21	119.7

O7—C5—H5A	110.2	C21—C22—C23	120.2 (3)
С2—С5—Н5А	110.2	C21—C22—H22	119.9
O7—C5—H5B	110.2	С23—С22—Н22	119.9
С2—С5—Н5В	110.2	C18—C23—C22	119.0 (2)
H5A—C5—H5B	108.5	C18—C23—H23	120.5
C11—C6—C7	121.4 (2)	С22—С23—Н23	120.5
C11—C6—S1	118.83 (17)	C3—O1—S1	117.30 (13)
C7—C6—S1	119.79 (17)	C4—O4—S2	118.34 (13)
C8—C7—C6	118.3 (2)	C5—O7—S3	118.26 (14)
С8—С7—Н7	120.8	O3—S1—O2	120.24 (10)
С6—С7—Н7	120.8	O3—S1—O1	104.44 (9)
C9—C8—C7	120.5 (2)	O2—S1—O1	109.50 (9)
С9—С8—Н8	119.7	O3—S1—C6	109.04 (10)
С7—С8—Н8	119.7	O2—S1—C6	108.75 (10)
C8—C9—C10	120.7 (2)	O1—S1—C6	103.57 (9)
С8—С9—Н9	119.6	O5—S2—O6	120.25 (12)
С10—С9—Н9	119.6	O5—S2—O4	103.92 (10)
С11—С10—С9	119.8 (2)	O6—S2—O4	109.54 (10)
C11-C10-H10	120.1	O5—S2—C12	108.62 (11)
C9—C10—H10	120.1	O6—S2—C12	108.60 (12)
C10-C11-C6	119.3 (2)	O4—S2—C12	104.83 (10)
C10-C11-H11	120.4	O8—S3—O9	120.10 (11)
C6—C11—H11	120.4	O8—S3—O7	103.38 (10)
C17—C12—C13	121.1 (2)	O9—S3—O7	109.48 (10)
C17—C12—S2	120.2 (2)	O8—S3—C18	109.52 (11)
C13—C12—S2	118.53 (19)	O9—S3—C18	108.91 (11)
C14—C13—C12	119.0 (3)	O7—S3—C18	104.22 (10)
C14—C13—H13	120.5		
C5—C2—C3—O1	-65.9 (2)	C21—C22—C23—C18	0.1 (4)
C4—C2—C3—O1	53.6 (2)	C2—C3—O1—S1	-170.43 (13)
C1—C2—C3—O1	174.42 (16)	C2—C4—O4—S2	-171.61 (14)
C3—C2—C4—O4	54.6 (2)	C2—C5—O7—S3	-151.65 (15)
C5—C2—C4—O4	173.71 (17)	C3—O1—S1—O3	-169.93 (14)
C1—C2—C4—O4	-63.9 (2)	C3—O1—S1—O2	-39.92 (17)
C3—C2—C5—O7	-178.97 (17)	C3—O1—S1—C6	75.94 (16)
C4—C2—C5—O7	60.0 (2)	C11—C6—S1—O3	-26.1 (2)
C1—C2—C5—O7	-62.1 (2)	C7—C6—S1—O3	153.34 (18)
C11—C6—C7—C8	-0.5 (4)	C11—C6—S1—O2	-158.96 (18)
S1—C6—C7—C8	179.99 (18)	C7—C6—S1—O2	20.5 (2)
C6—C7—C8—C9	1.2 (4)	C11—C6—S1—O1	84.64 (19)
C7—C8—C9—C10	-0.7 (4)	C7—C6—S1—O1	-95.88 (19)
C8—C9—C10—C11	-0.7 (4)	C4—O4—S2—O5	171.92 (16)
C9—C10—C11—C6	1.3 (4)	C4—O4—S2—O6	42.22 (18)
C7—C6—C11—C10	-0.7 (3)	C4—O4—S2—C12	-74.13 (17)
S1-C6-C11-C10	178.72 (18)	C17—C12—S2—O5	-139.7 (2)
C17—C12—C13—C14	2.0 (4)	C13—C12—S2—O5	36.1 (2)
S2-C12-C13-C14	-173.8 (2)	C17—C12—S2—O6	-7.3 (3)
C12—C13—C14—C15	-0.8 (4)	C13—C12—S2—O6	168.50 (19)
C13—C14—C15—C16	-0.7 (5)	C17—C12—S2—O4	109.7 (2)

C14—C15—C16—C17	1.1 (5)	C13—C12—S2—O4	-74.5 (2)
C13-C12-C17-C16	-1.6 (4)	C5—O7—S3—O8	179.79 (15)
S2-C12-C17-C16	174.1 (2)	C5—O7—S3—O9	50.67 (18)
C15-C16-C17-C12	0.1 (5)	C5—O7—S3—C18	-65.71 (17)
C23-C18-C19-C20	1.7 (4)	C23—C18—S3—O8	-137.7 (2)
S3—C18—C19—C20	-176.2 (2)	C19—C18—S3—O8	40.3 (2)
C18-C19-C20-C21	-0.8 (5)	C23—C18—S3—O9	-4.5 (2)
C19—C20—C21—C22	-0.4 (5)	C19—C18—S3—O9	173.4 (2)
C20—C21—C22—C23	0.8 (4)	C23—C18—S3—O7	112.2 (2)
C19—C18—C23—C22	-1.4 (4)	C19—C18—S3—O7	-69.8 (2)
S3—C18—C23—C22	176.55 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C1—H1C···O2 ⁱ	0.98	2.53	3.426 (3)	152
C10—H10…O5 ⁱⁱ	0.95	2.59	3.361 (3)	138
C14—H14···O8 ⁱⁱⁱ	0.95	2.49	3.222 (3)	134
C21—H21···Cg1 ^{iv}	0.95	2.92	3.766 (9)	149

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+2; (iv) *x*, *y*+1, *z*.

